Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 37
1.
BMC Complement Med Ther ; 24(1): 172, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38654265

BACKGROUND: To assess the efficacy of curcuminoids (curcumin, demethoxycurcumin, bisdemethoxycurcumin [BDC]) and their analogs (tetrahydrocurcumin [THC], tetrahydrodemethoxycurcumin [THDC], tetrahydrobisdemethoxycurcumin) in reducing inflammatory cytokines and their toxicity to primary human corneal limbal epithelial cells, these cells were cultured and exposed to these compounds. METHODS: The PrestoBlue assay assessed cell viability after treatment. Anti-inflammatory effects on hyperosmotic cells were determined using real-time polymerase chain reaction and significance was gauged using one-way analysis of variance and Tukey's tests, considering p-values < 0.05 as significant. RESULTS: Curcuminoids and their analogs, at 1, 10, and 100 µM, exhibited no effect on cell viability compared to controls. However, cyclosporin A 1:500 significantly reduced cell viability more than most curcuminoid treatments, except 100 µM curcumin and BDC. All tested curcuminoids and analogs at these concentrations significantly decreased mRNA expression levels of tumor necrosis factor-α, interleukin (IL)-1ß, IL-6, IL-17 A, matrix metallopeptidase-9, and intercellular adhesion molecule-1 after 90 mM NaCl stimulation compared to untreated cells. Furthermore, proinflammatory cytokine levels from hyperosmotic cells treated with 1, 10, and 100 µM curcumin, 100 µM BDC, 100 µM THC, 1 and 100 µM THDC mirrored those treated with cyclosporin A 1:500. CONCLUSION: The anti-inflammatory efficiency of 1 and 10 µM curcumin, 100 µM THC, 1 and 100 µM THDC was comparable to that of cyclosporin A 1:500 while maintaining cell viability.


Anti-Inflammatory Agents , Cell Survival , Curcumin , Epithelial Cells , Humans , Curcumin/pharmacology , Curcumin/analogs & derivatives , Anti-Inflammatory Agents/pharmacology , Epithelial Cells/drug effects , Cell Survival/drug effects , Cytokines/metabolism , Limbus Corneae/drug effects , Cells, Cultured , Diarylheptanoids/pharmacology , Epithelium, Corneal/drug effects
2.
BMC Public Health ; 23(1): 31, 2023 01 05.
Article En | MEDLINE | ID: mdl-36604667

BACKGROUND: There are few thorough studies on the extent and inter-element relationships of heavy metal contamination in printing factory workers, especially in developing countries. The objective of this study was to determine the levels of eight heavy metals, including arsenic (As), cadmium (Cd), chromium (Cr), nickel (Ni), cobalt (Co), lead (Pb), mercury (Hg), and manganese (Mn), in urine and scalp hair of printing industry workers, and assess inter-element correlations. METHODS: We examined a total of 85 urine samples and 85 scalp hair samples (3 cm hair segments taken from near the scalp) in 85 printing workers from a printing house in Bangkok, Thailand. We used an interviewer-administered questionnaire about participants' printing techniques, work characteristics, and work environment. Urine and scalp hair samples were analyzed for levels of each element using the inductively coupled plasma optical emission spectrometry (ICP-OES) technique. RESULTS: As, Cd, Cr, Ni, Pb were detected in urine with the geometric mean concentration range of 0.0028-0.0209 mg/L, and Hg, Pb, Ni, Cd, Co, Mn, Cr were detected in hair samples (0.4453-7.165 mg/kg dry weight) of printing workers. The geometric mean Ni level was significantly higher in the urine of production line workers than back-office personnel (0.0218 mg/L vs. 0.0132 mg/L; p = 0.0124). The other elements did not differ significantly between production line and back-office workers in either urine or hair. There was also a strong, statistically significant positive correlation between Ni and Co levels in hair samples of workers (r = 0.944, p < 0.0001). CONCLUSIONS: Average concentrations of most of the metals in urine and hair of printing workers were found to be above the upper reference values. The significantly higher concentrations of Ni in production line workers might be due to more exposure to printed materials. A strong inter-element correlation between Ni and Co in hair samples can increase stronger health effects and should be further investigated. This study reveals possible dependencies and impact interactions of heavy metal exposure in printing factory workers.


Arsenic , Mercury , Metals, Heavy , Humans , Cadmium/analysis , Thailand , Lead/analysis , Environmental Monitoring/methods , Metals, Heavy/analysis , Manganese/analysis , Nickel/analysis , Arsenic/analysis , Mercury/analysis , Hair/chemistry
3.
J Tradit Complement Med ; 11(6): 570-580, 2021 Nov.
Article En | MEDLINE | ID: mdl-34765521

BACKGROUND: Hyperpigmentation is a skin disorder, which is caused by an excess production of melanin. The reduction in melanin content without causing undesirable effects is required for the treatment of hyperpigmentation. Sericin is increasingly used as a hyperpigmentation treatment because of its antityrosinase activity. However, the various methods of sericin extraction have an effect on the composition and biological properties. The purpose of this study was to investigate the antioxidant and anti-melanogenic properties of sericin using different extraction methods including acid, base, heat, and urea extraction. METHODS: The chemical properties of extracted sericin were assessed in terms of amino acid components, thermal behavior, and UV-vis absorption. The inhibitory effects of sericin on melanogenesis were explored by determining the melanin content and cellular tyrosinase activity in B16F10 cells. RESULTS: Sericin from urea extraction provided different properties when compared with the other extraction methods. Our results indicate that urea-extracted sericin reduced the melanin content and cellular tyrosinase activity more effectively than the other extraction methods. Interestingly, the potential anti-melanogenic activity was more effective than kojic acid, a depigmenting agent used to treat hyperpigmentation. Moreover, treatment of urea-extracted sericin induced reactive oxygen species and subsequently activated antioxidant activity in B16F0 cells. CONCLUSIONS: Our results present the potential inhibitory effect of urea-extracted sericin on melanogenesis. The therapeutic potential of urea-extracted sericin can be used in the treatment of hyperpigmentation and its complications.

4.
ACS Omega ; 6(43): 28880-28889, 2021 Nov 02.
Article En | MEDLINE | ID: mdl-34746580

Eugenol is a major phenolic component derived from clove oil with potential medical applications. Of particular interest, it has been used as a therapeutic agent in topical applications because of its analgesic and local anesthetic properties. However, topical formulations of eugenol produce skin irritation, which limits its clinical applications. One promising strategy to overcome this disadvantage is by using a biocompatible material that could be an appropriate topical vehicle for eugenol. Researchers have recently focused on the development of eugenol-embedded calcium citrate nanoparticles (Eu-CaCit NPs) without adverse effects. The Eu-CaCit NPs were developed as a topical delivery system and their biocompatibility and penetration ability were evaluated. Eu-CaCit NPs at 1.2 mg/mL did not show cytotoxicity effects in human cells. Moreover, the Eu-CaCit NPs presented the ability to penetrate the dermis layer of the human intact skin following 12 h exposure. All the results concluded that Eu-CaCit NPs have shown a potential as a carrier for topical delivery of eugenol. These novel nanoparticles represent a promising alternative for topical application of local anesthetic with natural pain relievers.

5.
Pharmaceutics ; 13(5)2021 May 17.
Article En | MEDLINE | ID: mdl-34067883

Gold nanoparticles (AuNPs) are used for diagnostic and therapeutic purposes, especially antiangiogenesis, which are accomplished via inhibition of endothelial cell proliferation, migration, and tube formation. However, no research has been performed on the effects of AuNPs in pericytes, which play vital roles in endothelial cell functions and capillary tube formation during physiological and pathological processes. Therefore, the effects of AuNPs on the morphology and functions of pericytes need to be elucidated. This study treated human placental pericytes in monoculture with 20 nm AuNPs at a concentration of 30 ppm. Ki-67 and platelet-derived growth factor receptor-ß (PDGFR-ß) mRNA expression was measured using real-time reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Cell migration was assessed by Transwell migration assay. The fine structures of pericytes were observed by transmission electron microscopy. In addition, 30 ppm AuNP-treated pericytes and intact human umbilical vein endothelial cells were cocultured on Matrigel to form three-dimensional (3D) capillary tubes. The results demonstrated that AuNPs significantly inhibited proliferation, reduced PDGFR-ß mRNA expression, and decreased migration in pericytes. Ultrastructural analysis of pericytes revealed AuNPs in late endosomes, autolysosomes, and mitochondria. Remarkably, many mitochondria were swollen or damaged. Additionally, capillary tube formation was reduced. We found that numerous pericytes on 3D capillary tubes were round and did not extend their processes along the tubes, which resulted in more incomplete tube formation in the treatment group compared with the control group. In summary, AuNPs can affect pericyte proliferation, PDGFR-ß mRNA expression, migration, morphology, and capillary tube formation. The findings highlight the possible application of AuNPs in pericyte-targeted therapy for antiangiogenesis.

6.
Molecules ; 26(4)2021 Feb 15.
Article En | MEDLINE | ID: mdl-33672071

Twelve derivatives of biguanide-derived 1,3,5-triazines, a promising class of anticancer agent, were synthesised and evaluated for their anticancer activity against two colorectal cancer cell lines-HCT116 and SW620. 2c and 3c which are the derivatives containing o-hydroxyphenyl substituents exhibited the highest activity with IC50 against both cell lines in the range of 20-27 µM, which is comparable to the IC50 of cisplatin reference. Moreover, the potential use of the calcium citrate nanoparticles (CaCit NPs) as a platform for drug delivery system was studied on a selected 1,3,5-triazine derivative 2a. Condition optimisation revealed that the source of citrate ions and reaction time significantly influence the morphology, size and %drug loading of the particles. With the optimised conditions, "CaCit-2a NPs" were successfully synthesised with the size of 148 ± 23 nm and %drug loading of up to 16.3%. Furthermore, it was found that the release of 2a from the synthesised CaCit-2a NPs is pH-responsive, and 2a could be control released under the acidic cancer environment. The knowledge from this study is perceptive for further development of the 1,3,5-triazine-based anticancer drugs and provide the platform for the incorporation of other drugs in the CaCit NPs in the future.


Antineoplastic Agents/pharmacology , Biguanides/chemistry , Calcium Citrate/chemistry , Nanoparticles/chemistry , Triazines/chemical synthesis , Triazines/pharmacology , Cell Line, Tumor , Drug Liberation , Humans , Nanoparticles/ultrastructure , Spectroscopy, Fourier Transform Infrared , Thermogravimetry , Triazines/chemistry
7.
Biotechnol Appl Biochem ; 68(6): 1508-1517, 2021 Dec.
Article En | MEDLINE | ID: mdl-33146942

Silkworm sericin has been widely exploited in biomaterials due to its favorable biological activities. However, the extraction processes of sericin from silkworm cocoons can alter the biological and biophysical properties, including a structural diversity of natural sericin. In addition, extracted natural sericin is often contaminated with fibroin that may be harmful to human cells. Induction of tolerogenic dendritic cell (DC) has become a strategy in biomaterial fields because this cell type plays a key role in immune modulation and wound healing. To overcome undesired effects of extracted natural sericin and to improve its biological properties, we biosynthesized sericin 1-like protein that contained only functional motifs and tested its biological activity and immunomodulatory properties in fibroblasts and DCs, respectively. In comparison to natural sericin, biosynthetic sericin 1 promoted collagen production in fibroblasts at a late time point. Furthermore, DCs treated with biosynthetic sericin 1 exhibited a tolerogenic-like phenotype with semimaturation and low production of proinflammatory cytokines, but high production of anti-inflammatory cytokine, IL-10. Biosynthetic sericin 1 might be developed as immunomodulator or immunosuppressant.


Dendritic Cells/metabolism , Sericins/biosynthesis , Animals , Cells, Cultured , Collagen/biosynthesis , Dendritic Cells/chemistry , Female , Fibroblasts/metabolism , Mice , Mice, Inbred BALB C , Phenotype , Sericins/analysis
8.
Nanomaterials (Basel) ; 10(12)2020 Dec 16.
Article En | MEDLINE | ID: mdl-33339106

Leptospira infection can cause potential hazards to human health by stimulating inflammation, which is mediated mainly through the Toll-like receptor 2 (TLR2) pathway. Gold nanoparticles (AuNPs) are promising for medical applications, as they display both bioinert and noncytotoxic characteristics. AuNPs have been shown to have the ability to modify immune responses. To understand the in vitro immunomodulatory effect of AuNPs in a Leptospira infection model, the activation of TLR2 expression was examined in HEK-Blue-hTLR2 cells treated with Leptospira serovars and/or AuNPs (10 and 20 nm). The ability of AuNPs to modulate an inflammatory response induced by Leptospira was examined in terms of transcript expression level modulation of three proinflammatory cytokines (tumor necrosis factor-α, interleukin (IL)-1ß and IL-6) using two-stage quantitative real-time reverse transcriptase PCR. The results revealed that the administration of 10 nm AuNPs could augment the Leptospira-induced TLR2 signaling response and upregulate the expression of all three cytokine gene transcripts, whereas the 20 nm AuNPs attenuated the TLR2 activation and expression of proinflammatory cytokines. This indicates that AuNPs can modulate inflammatory parameters in Leptospira infection and different-sized AuNPs had different immunomodulatory functions in this model.

9.
Article En | MEDLINE | ID: mdl-32526911

Countries of lower Mekong regions are highly alarmed by the spread of fish-borne trematode infections, i.e., small liver flukes and minute intestinal flukes especially in Thailand, Lao People's Democratic Republic (Lao PDR), Vietnam, Cambodia and Myanmar. Moreover; the incidence of cholangiocarcinoma has also been increasing in the endemic area of liver fluke infections. Only a few reports have been published concerning the fish-borne trematodes infections in the central region of Myanmar. However; there is still a lack of information regarding the status of trematodes infections in second intermediate hosts in the Mekong region of Myanmar. Therefore, we conducted surveillance on the distribution of trematode metacercariae in small cyprinoid fishes collected from the Mekong region of Myanmar. A total of 689 fishes (12 different species of cyprinoid fishes) have been collected and examined by pepsin digestion methods. We discovered four species of fish-borne trematode metacercariae infections, i.e., carcinogenic liver fluke, Opisthorchis viverrini; minute intestinal flukes, Haplorchis taichui; Haplorchis pumilio and Haplorchoides sp. in Tachileik, the Mekong Region of Myanmar. The outcome of this study could be a useful index for the fish-borne zoonotic trematode epidemiology in the Mekong area. Besides, the results of our study contribute to filling the gap of information necessary for the control and prevention of fish-borne trematode zoonotic infections in the Mekong region.


Fasciola hepatica , Fish Diseases , Fishes , Liver Neoplasms , Trematoda , Trematode Infections , Animals , Fasciola hepatica/pathogenicity , Fishes/parasitology , Liver Neoplasms/parasitology , Metacercariae , Myanmar/epidemiology , Trematode Infections/complications , Trematode Infections/epidemiology , Zoonoses
10.
ACS Omega ; 5(13): 7418-7423, 2020 Apr 07.
Article En | MEDLINE | ID: mdl-32280883

In this work, the preparation of novel calcium citrate (CaCit) nanoparticles (NPs) has been disclosed and the use of these NPs as "Trojan" carriers has been demonstrated. The concentration ratio between calcium ions and citrate ions was optimized, yielding spherical NPs with size in the range of 100-200 nm. Additionally, a fluorescent dye, fluorescein isothiocyanate (FITC), was successfully encapsulated by the coprecipitation method. The products were characterized by thermogravimetric analysis and scanning electron microscopy. The cellular uptake was investigated by incubating the synthesized fluorescent-tagged NPs with human keratinocytes using a confocal microscope. The accumulation of the FITC in the cells suggested that the CaCit NPs can potentially be used as novel drug carriers.

11.
Toxicol Res ; 35(3): 257-270, 2019 Jul.
Article En | MEDLINE | ID: mdl-31341555

Silver nanoparticles (AgNPs) have been widely used in a variety of applications in innovative development; consequently, people are more exposed to this particle. Growing concern about toxicity from AgNP exposure has attracted greater attention, while questions about nanosilver-responsive genes and consequences for human health remain unanswered. By considering early detection and prevention of nanotoxicology at the genetic level, this study aimed to identify 1) changes in gene expression levels that could be potential indicators for AgNP toxicity and 2) morphological phenotypes correlating to toxicity of HepG2 cells. To detect possible nanosilver-responsive genes in xenogenic targeted organs, a comprehensive systematic literature review of changes in gene expression in HepG2 cells after AgNP exposure and in silico method, connection up- and down-regulation expression analysis of microarrays (CU-DREAM), were performed. In addition, cells were extracted and processed for transmission electron microscopy to examine ultrastructural alterations. From the Gene Expression Omnibus (GEO) Series database, we selected genes that were up- and down-regulated in AgNPs, but not up- and down-regulated in silver ion exposed cells, as nanosilver-responsive genes. HepG2 cells in the AgNP-treated group showed distinct ultrastructural alterations. Our results suggested potential representative gene data after AgNPs exposure provide insight into assessment and prediction of toxicity from nanosilver exposure.

12.
PLoS Negl Trop Dis ; 13(7): e0007440, 2019 07.
Article En | MEDLINE | ID: mdl-31283768

Scrub typhus, murine typhus, and leptospirosis are widely neglected infectious diseases caused by Orientia tsutsugamushi, Rickettsia typhi, and pathogenic Leptospira spp., respectively. Patients usually present with non-specific symptoms and therefore are commonly diagnosed with acute undifferentiated febrile illness. Consequently, patients face delayed treatment and increased mortality. Antibody-based serological test currently used as gold standard has limitations due to insufficient antibody titers, especially in the early phase of infection. In this study, we aimed to develop multiplex PCR to combine 3 primer pairs that target specific genes encoding 56-kDa TSA of O. tsutsugamushi, 17-kDa antigen of R. typhi, and LipL32 of L. Interrogans and evaluate its performance in comparison to the standard serological tests. Using EDTA blood samples of known patients, the sensitivity and specificity of our multiplex PCR was 100% and 70%, respectively. In addition, the assay was able to diagnose the co-infection of scrub typhus and leptospirosis. The assay may be useful in identifying causative agents during the early phase of these diseases, enabling prompt and appropriate treatment.


Antigens, Bacterial/genetics , Fever/microbiology , Multiplex Polymerase Chain Reaction/methods , Neglected Diseases/diagnosis , Neglected Diseases/microbiology , Animals , Antibodies, Bacterial/blood , DNA Primers/genetics , Fever/diagnosis , Humans , Leptospira/genetics , Leptospirosis/diagnosis , Mice , Orientia tsutsugamushi/genetics , Rickettsia typhi/genetics , Scrub Typhus/diagnosis , Sensitivity and Specificity , Serologic Tests , Typhus, Endemic Flea-Borne/diagnosis
13.
Int J Nanomedicine ; 14: 4573-4587, 2019.
Article En | MEDLINE | ID: mdl-31296987

Introduction: Engineered nanoparticles (ENPs) are one of the most widely used types of nanomaterials. Recently, ENPs have been shown to cause cellular damage by inducing ROS (reactive oxygen species) both directly and indirectly, leading to the changes in DNA methylation levels, which is an important epigenetic mechanism. In this study, we investigated the effect of ENP-induced ROS on DNA methylation. Materials and methods: Human embryonic kidney and human keratinocyte (HaCaT) cells were exposed to three different types of ENPs: gold nanoparticles, silicon nanoparticles (SiNPs), and chitosan nanoparticles (CSNPs). We then evaluated the cytotoxicity of the ENPs by measuring cell viability, morphology, cell apoptosis, cell proliferation, cell cycle distribution and ROS levels. Global DNA methylation levels was measured using 5-methylcytosine immunocytochemical staining and HPLC analysis. DNA methylation levels of the transposable elements, long interspersed element-1 (LINE-1) and Alu, were also measured using combined bisulfite restriction analysis technique. DNA methylation levels of the TEs LINE-1 and Alu were also measured using combined bisulfite restriction analysis technique. Results: We found that HaCaT cells that were exposed to SiNPs exhibited increased ROS levels, whereas HaCaT cells that were exposed to SiNPs and CSNPs experienced global and Alu hypomethylation, with no change in LINE-1 being observed in either cell line. The demethylation of Alu in HaCaT cells following exposure to SiNPs and CSNPs was prevented when the cells were pretreated with an antioxidant. Conclusion: The global DNA methylation that is observed in cells exposed to ENPs is associated with methylation of the Alu elements. However, the change in DNA methylation levels following ENP exposure is specific to particular ENP and cell types and independent of ROS, being induced indirectly through disruption of the oxidative defense process.


Acetylcysteine/pharmacology , DNA Methylation/drug effects , Nanoparticles/chemistry , Nanoparticles/toxicity , Alu Elements/drug effects , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Line , Cell Survival/drug effects , Chitosan/metabolism , Epigenesis, Genetic , Gold/metabolism , Humans , Keratinocytes/drug effects , Long Interspersed Nucleotide Elements/drug effects , Protein Corona , Reactive Oxygen Species/metabolism , Silicon/chemistry
14.
Nanomaterials (Basel) ; 8(10)2018 Oct 12.
Article En | MEDLINE | ID: mdl-30322073

Copper oxide nanoparticles (CuONPs) have attracted considerable attention, because of their biocide potential and capability for optical imaging, however CuONPs were shown to be highly toxic in various experimental model systems. In this study, mechanism underlying CuONP-induced toxicity was investigated using Drosophila as an in vivo model. Upon oral route of administration, CuONPs accumulated in the body, and caused a dose-dependent decrease in egg-to-adult survivorship and a delay in development. In particular, transmission electron microscopy analysis revealed CuONPs were detected inside the intestinal epithelial cells and lumen. A drastic increase in apoptosis and reactive oxygen species was also observed in the gut exposed to CuONPs. Importantly, we found that inhibition of the transcription factor Nrf2 further enhances the toxicity caused by CuONPs. These observations suggest that CuONPs disrupt the gut homeostasis and that oxidative stress serves as one of the primary causes of CuONP-induced toxicity in Drosophila.

15.
Carbohydr Polym ; 200: 616-623, 2018 Nov 15.
Article En | MEDLINE | ID: mdl-30177207

Development of biopolymer hydrogels with multiple networks is regarded as a way to obtain gel strengths with bio-related properties. The present work, for the first time, demonstrates preparation of one pot triple network hydrogel of chitosan (CS) and hyaluronic acid (HA) (HA-triazole/CS-Cu(II) gel), formed by triazole linkage, metal-coordination, and CS-HA polyion complexation. The salt containing water system favors polyion complex formation of CS and HA without precipitation. HA functionalized with alkyne and azide groups in aqueous EDC/NHS allows crosslinking of HA via triazole linkage using Cu(I) azide-alkyne Click chemistry (CuAAC). The required Cu(I) catalyst is generated from Cu(II) in the CS-Cu complex upon addition of sodium ascorbate. The CS/NHS system leads to the solubilization of CS, thus enabling ionic gelation. The mechanical properties and morphologies can be controlled by simply varying the CS-HA mole ratios. In addition, the CS-HA triple-network (TN) hydrogels show biocompatibility based on studies with chondrocyte cells.

16.
Drug Des Devel Ther ; 12: 2361-2369, 2018.
Article En | MEDLINE | ID: mdl-30122894

BACKGROUND: Doxorubicin (DOX) is the most widely used chemotherapeutic agent that has multimodal cytotoxicity. The main cytotoxic actions of DOX occur in the nucleus. The emergence of drug-resistant cancer cells that have the ability to actively efflux DOX out of the nucleus, and the cytoplasm has led to the search for a more effective derivative of this drug. MATERIALS AND METHODS: We created a new derivative of DOX that was derived via simple conjugation of the 3' amino group of DOX to the dexamethasone molecule. RESULTS: Despite having a lower cytotoxic activity in MCF-7 cells, the conjugated product, DexDOX, exerted its actions in a manner that was different to that of DOX. DexDOX rapidly induced MCF-7 cell apoptosis without entering the nucleus. Further analysis showed that Dex-DOX increased cytosolic oxidative stress and did not interfere with the cell cycle. In addition, the conjugated product retained its cytotoxicity in multidrug resistance-1-overexpressing MCF-7 cells that had an approximately 16-fold higher resistance to DOX. CONCLUSION: We have synthesized a new derivative of DOX, which has the ability to overcome multidrug resistance-1-induced resistance. This molecule may have potential as a future chemotherapeutic agent.


Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Nucleus/drug effects , Dexamethasone/pharmacology , Doxorubicin/analogs & derivatives , ATP Binding Cassette Transporter, Subfamily B/physiology , Cell Cycle/drug effects , Doxorubicin/pharmacology , Drug Resistance, Neoplasm , Humans , MCF-7 Cells , Oxidative Stress/drug effects
17.
BMC Microbiol ; 18(1): 85, 2018 08 17.
Article En | MEDLINE | ID: mdl-30119646

BACKGROUND: Gold nanoparticles (AuNP) have several biochemical advantageous properties especially for a candidate of drug carrier. However, the non-conjugated AuNP has a higher rate of cellular uptake than the conjugated ones. Spherical AuNP in a proper size (20-30 nm) is non-toxic to mice and shows anti-inflammatory properties. We tested if the administration of AuNP, as an adjuvant to antibiotics, could attenuate bacterial sepsis in cecal ligation and puncture (CLP) mouse model with antibiotic (imipenem/cilastatin). RESULTS: Indeed, AuNP administration at the time of CLP improved the survival, blood bacterial burdens, kidney function, liver injury and inflammatory cytokines (TNF-α, IL-6, IL-1ß and IL-10). AuNP also decreased M1 macrophages (CD86 + ve in F4/80 + ve cells) and increased M2 macrophages (CD206 + ve in F4/80 + ve cells) in the spleens of sepsis mice. The weak antibiotic effect of AuNP was demonstrated as the reduction of E. coli colony after 4 h incubation. In addition, AuNP altered cytokine production of bone-marrow-derived macrophages including reduced TNF-α, IL-6 and IL-1ß but increased IL-10 at 6 and 24 h. Moreover, AuNP induced macrophage polarization toward anti-inflammatory responses (M2) as presented by increased Arg1 (Arginase 1) and PPARγ with decreased Nos2 (inducible nitric oxide synthase, iNos) and Nur77 at 3 h after incubation in vitro. CONCLUSIONS: The adjuvant therapy of AuNP, with a proper antibiotic, attenuated CLP-induced bacterial sepsis in mice, at least in part, through the antibiotic effect and the induction of macrophage function toward the anti-inflammatory responses.


Anti-Bacterial Agents/pharmacology , Cecum , Gold/chemistry , Ligation/methods , Macrophages/immunology , Metal Nanoparticles/chemistry , Punctures/methods , Sepsis/drug therapy , Animals , Arginase/metabolism , Bacteria/pathogenicity , Chemical and Drug Induced Liver Injury , Cytokines/metabolism , Disease Models, Animal , Escherichia coli/pathogenicity , Interleukin-10/metabolism , Interleukin-1beta/metabolism , Interleukin-6/metabolism , Kidney/drug effects , Kidney Function Tests , Male , Mice , Nitric Oxide Synthase Type II/metabolism , Particle Size , Sepsis/microbiology , Tumor Necrosis Factor-alpha/metabolism
18.
Sci Rep ; 8(1): 9511, 2018 06 22.
Article En | MEDLINE | ID: mdl-29934528

Dysregulated JAK/STAT signaling has been implicated in breast cancer metastasis, which is associated with high relapse risks. However, mechanisms underlying JAK/STAT signaling-mediated breast tumorigenesis are poorly understood. Here, we showed that GRAMD1B expression is upregulated on IL-6 but downregulated upon treatment with the JAK2 inhibitor AG490 in the breast cancer MDA-MB-231 cells. Notably, Gramd1b knockdown caused morphological changes of the cells, characterized by the formation of membrane ruffling and protrusions, implicating its role in cell migration. Consistently, GRAMD1B inhibition significantly enhanced cell migration, with an increase in the levels of the Rho family of GTPases. We also found that Gramd1b knockdown-mediated pro-migratory phenotype is associated with JAK2/STAT3 and Akt activation, and that JAK2 or Akt inhibition efficiently suppresses the phenotype. Interestingly, AG490 dose-dependently increased p-Akt levels, and our epistasis analysis suggested that the effect of JAK/STAT inhibition on p-Akt is via the regulation of GRAMD1B expression. Taken together, our results suggest that GRAMD1B is a key signaling molecule that functions to inhibit cell migration in breast cancer by negating both JAK/STAT and Akt signaling, providing the foundation for its development as a novel biomarker in breast cancer.


Breast Neoplasms/pathology , Cell Movement , Janus Kinases/metabolism , Membrane Proteins/metabolism , Proto-Oncogene Proteins c-akt/metabolism , STAT Transcription Factors/metabolism , Signal Transduction , Cell Line, Tumor , Down-Regulation/drug effects , Female , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Humans , Membrane Proteins/deficiency , Membrane Proteins/genetics , Phenotype
19.
J Virol Methods ; 255: 60-65, 2018 05.
Article En | MEDLINE | ID: mdl-29447912

HPV-16 infection is the most common cause of cervical cancer. As HPV-16 transforms the cell, E6 oncoprotein is over-expressed. Therefore, molecular detection of HPV-16 E6 mRNA is now being used for diagnosis and prediction of cancer development. Besides detecting E6 mRNA, a rapid lateral flow detecting the E6 protein using enzyme immunoassay is also now on market with a sensitivity of 53.5% for cervical intraepithelial neoplasia (CIN)-3 or more severe (CIN-3+). Here, an immunogold-agglutination assay was developed to detect not only HPV-16 E6 protein but also L1, a major capsid protein found in the productive stage of the virus. Evaluation of this test using HPV-16 DNA positive cervical samples showed that the HPV-16 E6 immunogold-agglutination assay results correlated well with the progression of the cervical lesions, i.e., 10.34% of CIN-1, 68.75% of CIN-3 and 80% of cancer (CaCx) and none for healthy normal samples. Interestingly, the HPV-16 L1 protein was found in most of the cases with cancer indicating the possibility of virion production. Immunogold-agglutination assay for E6 protein is simpler, easier to be performed with a sensitivity of 73.1% for CIN-3+ suggesting a good method for laboratory diagnostic use.


Agglutination Tests , Agglutination , Capsid Proteins/immunology , Immunohistochemistry , Oncogene Proteins, Viral/immunology , Papillomavirus Infections/diagnosis , Repressor Proteins/immunology , Agglutination Tests/methods , Cell Line , Humans , Nanoparticles , Papillomavirus Infections/immunology , Papillomavirus Infections/virology , Sensitivity and Specificity
...